Что характеризует момент инерции твердого тела

Что характеризует момент инерции твердого тела

В статье узнаете что такое момент инерции, как влияет ось вращения, а также момент вращения для материальной точки, множества частиц и для твердых тел.

Момент инерции, обозначенный буквой I, является физической величиной, характерной для вращательного движения тела. Это значение предполагает постоянное значение для данного тела и конкретной оси его вращения. Величина момента инерции зависит от веса тела, положения оси вращения, вокруг которой вращается тело и распределения его массы. Поэтому можно написать, что момент инерции тела информирует нас о том, как масса вращающегося тела распределяется вокруг фиксированной оси его вращения. Чем выше значение момента инерции, тем сложнее установить или изменить вращательное движение данного тела (например, уменьшить или увеличить его угловую скорость).

Момент инерции тела относительно оси вращения

На следующем рисунке показано, как выбор оси вращения тела влияет на значение момента его инерции и, следовательно, на легкость/сложность его вращения. На рисунках а) и б) показан однородный цилиндр с радиусом r и высотой h, который вращается вокруг продольной оси (рисунок а) и вокруг оси, перпендикулярной цилиндру, проходящему через его центр (рисунок б).

Ролик с радиусом r и высотой h вращается вокруг продольной оси (рисунок а) и оси, перпендикулярной цилиндру, проходящему через его центр (рисунок б)). Вес ролика в случае а) гораздо более сфокусирован вблизи его оси вращения, чем в случае б), поэтому цилиндр с рисунка а) вращать легче, чем ролик с рисунка б).

В обоих случаях мы имеем дело с одним и тем же телом, но в первом случае (рис. А) легче вращать ролик. Причиной такой ситуации является различное распределение веса цилиндра вокруг его оси вращения: при вращении цилиндра вокруг продольной оси масса ролика более сфокусирована вблизи оси вращения, чем во второй. В результате получается меньшее значение момента инерции цилиндра из рисунка а), а не цилиндра из рисунка б).

Если вы не хотите читать всю информацию советуем вам посмотреть видео про момент силы, в котором вы узнаете абсолютно все:

Момент инерции материальной точки

Чтобы вычислить момент инерции и вращение отдельной частицы вокруг заданной оси вращения, используем следующее выражение:

где m — масса частицы, r — расстояние частицы от оси вращения.

Момента инерции измеряется в кг ⋅ м 2 в системе СИ.

Момент инерции сложного тела с частицами

Момент инерции тела, состоящего из n частиц, равен сумме моментов инерции каждой частицы относительно данной оси вращения.

Например, для тела, состоящего из четырех частиц, имеем:

где m1, m2, m3 и m4 — массы частиц, которые составляют тела, r1, r2, r3 и r4, расстояние от оси вращения соответственно частиц с массами m1, m2, m3 и m4.

Читайте также:  Как отредактировать размытое фото

Момент инерции твердого тела

Когда тело состоит из очень многих частиц, расположенных близко друг к другу, сумма моментов инерции в приведенном выше уравнении заменяется интегралом. Если расширенное тело разделено на бесконечно малые элементы с массой dm, удаленной от оси вращения на величину r, момент инерции I будет равен:

На следующем рисунке показаны выбранные расширенные тела с их моментами инерции, рассчитанными для осей вращения, указанных на чертежах.

Момент инерции обода

Момент инерции обода будет равен I=mr 2

Момент инерции шара

Момент инерции шара будет равен I=2/5mr 2

Момент инерции сферы

Момент инерции сферы будет равен I=2/3mr 2

Момент инерции к оси цилиндра

Момент инерции к оси цилиндра будет равен I=1/2mr 2

Момент инерции к оси через центр цилиндра

Момент инерции к оси цилиндра, проходящей через центр цилиндра будет равен I=1/4mr 2 +1/12mh 2

Момент инерции к оси перпендикулярной поверхности пластины

Момент инерции к оси перпендикулярной поверхности пластины, которая проходит через ее центр будет равен I=1/12m(x 2 +y 2 )

Важное примечание:
при вводе значения момента инерции I для данного тела не забывайте всегда указывать ось вращения, для которой было рассчитано значение I.

При изучении вращения твердых тел будем пользоваться понятием момента инерции. Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная суммепроизведений масс л материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина rв этом случае есть функция положения точки с координатамих, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой hи радиусомRотносительно его геометрической оси (рис. 23). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщиныdrс внутренним радиусомrи внешнимr+dr. Момент инерции каждого полого цилиндраdJ=r 2 dm(так какdr з dr.Тогда момент инерции сплошного цилиндра

но так как R 2 h —объем цилиндра, то его массаm=R 2 h,а момент инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера:момент инерции телаJотносительно произвольной оси равен моменту его инерцииJcотносительно параллельной оси, проходящей через центр массСтела, сложенному с произведением массыттела на квадрат расстоянияамежду осями:

(16.1)

В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т —масса тела).

Читайте также:  График цен на товары

§ 17. Кинетическая энергия вращения

Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвижной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными массамит1, т2 . тn ,находящиеся на расстоянииr1,r2. rnот оси.

При вращении твердого тела относительно неподвижной оси отдельные его элементар­ные объемы массами miопишут окружности различных радиусовri, и имеют различные линейные скоростиvi.Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:

(17.1)

Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:

Используя выражение (17.1), получаем

где Jz момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела

(17.2)

Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела движущегося поступательно (T=mv 2 /2),следует, что момент инерции —мера инертности телапри вращательном движении. Формула (17.2) справедлива для тела вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:

где m— масса катящегося тела;vc скорость центра масс тела;Jc момент инер­ции тела относительно оси, проходящей через его центр масс;— угловая скорость тела.

Цель работы: определить момент инерции крестовины с грузами, используя законы динамики вращательного движения и сохранения энергии.

Приборы и принадлежности: маятник Обербека, грузы, масштабная линейка, секундомер, штангенциркуль.

Схема экспериментальной установки:

Методика исследования и описание установки

Момент инерции твердого тела является физической величиной, характеризующей инертность тела при изменении угловой скорости вращения этого тела ω под действием вращающего момента М.

Моментом инерции твердого тела называется скалярная физическая величина равная:

, (1)

где dV — элемент объема;

ρ плотность;

r — расстояние от этого элемента до оси вращения.

Из формулы (1) видно, что момент инерции не зависит от характера движения, а зависит от размеров, форм и плотности тела. Момент инерции твердого тела во вращательном движении выполняет ту же роль, что и масса тела при поступательном движении.

Проектирование машин и механизмов, имеющих вращающиеся при работе детали, ведется с учетом моментов инерции этих деталей.

Для однородного тела правильной геометрической формы момент инерции может быть вычислен теоретически (1). При сложной форме тела и неравномерном распределении плотности вещества в нем теоретическое вычисление момента инерции может быть достаточно сложной задачей. В этих случаях момент инерции определяют опытным путем. В настоящей работе определяется момент инерции крестовины маятника Обербека методом вращения.

Читайте также:  Рейтинг провайдеров цифрового телевидения в москве

Подвижная часть маятника Обербека (крестовина) состоит из двухступенчатого блока, насаженного на ось, и четырех спиц с одинаковыми цилиндрическими грузами с массами m1. Грузы m1 можно перемещать, закрепляя в том или ином положении, меняя этим момент инерции крестовины.

Центр тяжести системы должен находиться на оси вращения. Крестовина приводится в движение при помощи груза массой m, прикрепленного на нити, накрученной на шкив.

Итак, если груз опустить с высоты h, то он будет двигаться с линейным ускорением:

, (2)

где t — время движения груза на участке длиной h.

Крестовина же при этом будет вращаться с угловым ускорением:

, (3)

где r — радиус шкива, на который наматывается нить.

С другой стороны, это ускорение по закону динамики вращательного движения:

, (4)

, (5)

где g — ускорение свободного падения.

На основании (2), (3), (4), (5) получаем:

. (6)

Порядок выполнения работы

1. По указанию преподавателя откройте программу, содержащую блок лабораторных работ по физике, раздел «механика, статистическая физика и термодинамика». Выберите нужную вам лабораторную работу.

2. Еще раз внимательно прочитайте теорию и методику проведения работы. Для этого щелкните левой клавишей мыши на экране кнопку «Теория и методика проведения работы».

3. Откройте flash — анимацию, для этого щелкните кнопку «Эксперимент».

4. По указанию преподавателя с помощью мыши задайте параметры экспериментальной установки.

5. Запишите полученные данные в таблицу.

6. Щелкните кнопку «Пуск» для начала эксперимента. Остановите секундомер с помощью мыши в момент касания грузом нулевого уровня.

7. Занесите полученное значение времени в таблицу.

8. Повторите опыт 10 раз, каждый раз вводя параметры установки.

9. При помощи калькулятора произведите вычисления предлагаемых величин.

10. Сделайте вывод о проделанной работе.

11. Ответьте на контрольные вопросы.

Обработка результатов измерений

1. Абсолютные погрешности времени определить либо как погрешность многократных измерений, либо как погрешность секундомера (по указанию преподавателя)

2. Момент инерции рассчитывается по формуле (6).

3. Относительные погрешности опытов определяются по формуле

.

4. Абсолютные погрешности опытов рассчитать по формуле

.

Таблица измерений

Номер опыта m… h… t… Dt… r… Dr…
Среднее значение

1) Что называется моментом инерции материальной точки и абсолютно твердого тела?

2) Что называется моментом силы относительно неподвижной точки и неподвижной оси, как он направлен, как определяется его модуль?

3) Записать основной закон динамики вращательного движения.

4) Как меняется отношение линейных ускорений груза m, если грузы m1 сдвинуть к центру?

5) Что изменится, если изменить диаметр шкива, на который наматывается нить?

Ссылка на основную публикацию
Что такое секретный режим
Режим инкогнито — приватный режим работы браузера, при работе в браузере не сохраняются данные о посещенных сайтах, поисковых запросах, другие...
Через какое время отключают сим карту мегафон
Часто можно слышать, что некоторые люди вместо одной сим-карты предпочитают пользоваться двумя или сразу несколькими. Это объясняется лояльной политикой компании...
Через прямую l провести плоскость перпендикулярно данной
Не будет преувеличением утверждать, что построение взаимно перпендикулярных прямых и плоскостей наряду с определением расстояния между двумя точками являются основными...
Что такое сенсорный экран на телефоне
Сначала тачскрины (сенсорные экраны) встречались достаточно редко. Их возможно было найти, только лишь в некоторых КПК, PDA (карманных компьютерах). Как...
Adblock detector