Шины firewire ieee 1394

Шины firewire ieee 1394

IEEE 1394 Interface
Тип Последовательная связь
История
Разработчик Apple Computer (сейчас Apple, Inc.)
Разработано 1995
Произведено 1995 — 2013
Вытеснено Thunderbolt (2013)
Спецификации
Длина до 4,5 м
Ширина 1
Подключение на ходу Да
Внешнее Да
Макс. напряжение 30 В
Макс. ток 1,5 A
Сигнал данных Да
Полоса пропускания 400–3200 Мбит/с (50–400 Мбайт/с)
Выводы 4, 6, 9

IEEE 1394 (FireWire [1] , i-Link) — последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Различные компании продвигают стандарт под своими торговыми марками:

Содержание

История [ править | править код ]

В 1986 году членами Комитета по стандартам микрокомпьютеров (Microcomputer Standards Committee) принято решение объединить существовавшие в то время различные варианты последовательной шины ( Serial Bus ).

В 1992 году разработкой интерфейса занялась Apple.

В 1995 году принят стандарт IEEE 1394 (сама технология была разработана намного раньше, до появления Windows 95, что показывает большой потенциал данного института).

Около 1998 года содружество компаний, в том числе Microsoft, развивали идею обязательности 1394 для любого компьютера и использования 1394 внутри корпуса, а не только вне его. Существовали даже карты контроллеров с одним разъёмом, направленным внутрь корпуса. Также существовала идея Device Bay, то есть отсека для устройства со встроенным в отсек разъёмом 1394 и поддержкой горячей замены.

Такие тенденции прослеживаются в материалах Microsoft той поры, предназначенных для разработчиков компьютеров. Можно сделать вывод, что 1394 предлагали как замену ATA, то есть на роль, ныне выполняемую SATA.

Но этим идеям не суждено было воплотиться, и одной из главных причин такого исхода была лицензионная политика компании Apple, требующей выплат за каждый чип контроллера. Модели системных плат и ноутбуков, представленные на рынке начала 2010-х годов, как правило, уже не поддерживают интерфейс FireWire. Исключения представлены в узком топовом IT-сегменте [2] [3] .

Преимущества [ править | править код ]

  • Горячее подключение — возможность переконфигурировать шину без выключения компьютера.
  • Различная скорость передачи данных — 100, 200 и 400 Мбит/с в стандарте IEEE 1394/1394a, дополнительно 800 и 1600 Мбит/с в стандарте IEEE 1394b и 3200 Мбит/с в спецификации S3200.
  • Гибкая топология — равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера).
  • Высокая скорость — возможность обработки мультимедиа-сигнала в реальном времени
  • Поддержка изохронного трафика [4] .
  • Поддержка атомарных операций — сравнение/обмен, атомарное увеличение (операции семейства LOCK — compare/swap, fetch/add и т. д.).
  • Открытая архитектура — отсутствие необходимости использования специального программного обеспечения.
  • Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До 1,5 А и напряжение от 8 до 40 вольт.
  • Подключение до 63 устройств.

Шина IEEE 1394 может использоваться для:

Основные сведения [ править | править код ]

Кабель представляет собой 2 витые пары — А и B, распаянные как A к B, а на другой стороне кабеля — как B к A. Также возможен необязательный проводник питания.

Устройство может иметь до 4 портов (разъёмов). В одной топологии может быть до 64 устройств. Максимальная длина пути в топологии — 16. Топология древовидная, замкнутые петли не допускаются.

При присоединении и отсоединении устройства происходит сброс шины, после которого устройства самостоятельно выбирают из себя главное, пытаясь взвалить это «главенство» на соседа. После определения главного устройства становится ясна логическая направленность каждого отрезка кабеля — к главному или же от главного. После этого возможна раздача номеров устройствам. После раздачи номеров возможно исполнение обращений к устройствам.

Во время раздачи номеров по шине идёт трафик пакетов, каждый из которых содержит в себе количество портов на устройстве, ориентацию каждого порта — не подключён / к главному / от главного, а также максимальную скорость каждой связи (2 порта и отрезок кабеля). Контроллер 1394 принимает эти пакеты, после чего стек драйверов строит карту топологии (связей между устройствами) и скоростей (наихудшая скорость на пути от контроллера до устройства).

Операции шины делятся на асинхронные и изохронные.

Асинхронные операции — это запись/чтение 32-битного слова, блока слов, а также атомарные операции. Асинхронные операции используют 24-битные адреса в пределах каждого устройства и 16-битные номера устройств (поддержка межшинных мостов). Некоторые адреса зарезервированы под главнейшие управляющие регистры устройств. Асинхронные операции поддерживают двухфазное исполнение — запрос, промежуточный ответ, потом позже окончательный ответ.

Изохронные операции — это передача пакетов данных в ритме, строго приуроченном к ритму 8 КГц, задаваемому ведущим устройством шины путём инициации транзакций «запись в регистр текущего времени». Вместо адресов в изохронном трафике используются номера каналов от 0 до 31. Подтверждений не предусмотрено, изохронные операции есть одностороннее вещание.

Изохронные операции требуют выделения изохронных ресурсов — номера канала и полосы пропускания. Это делается атомарной асинхронной транзакцией на некие стандартные адреса одного из устройств шины, избранного как «менеджер изохронных ресурсов».

Помимо кабельной реализации шины, в стандарте описана и наплатная (реализации неизвестны).

Использование [ править | править код ]

Сеть поверх 1394 и FireNet [ править | править код ]

Существуют стандарты RFC 2734 — IP поверх 1394 и RFC 3146 — IPv6 поверх 1394. Поддерживались в ОС Windows XP и Windows Server 2003. Поддержка со стороны Microsoft прекращена в ОС Windows Vista, однако существует реализация сетевого стека FireNet в альтернативных драйверах от компании Unibrain [5] [6] (версия 6.00 вышла в ноябре 2012 года [7] ).

Поддерживается во многих ОС семейства UNIX (обычно требуется пересборка ядра с этой поддержкой).

Стандарт не подразумевает эмуляцию Ethernet над 1394 и использует совершенно иной протокол ARP. Несмотря на это, эмуляция Ethernet над 1394 была включена в ОС FreeBSD и является специфичной для данной ОС.

Внешние дисковые устройства [ править | править код ]

Существует стандарт SBP-2 — SCSI поверх 1394. В основном используется для подключения внешних корпусов с жёсткими дисками к компьютерам — корпус содержит чип моста 1394—ATA. При этом скорость передачи данных может достигать 27 МБ/с, что превышает скорость USB 2.0 как интерфейса к устройствам хранения данных, равную примерно 43 МБ/с, однако гораздо ниже таковой для USB 3.0.

Поддерживается в ОС семейства Windows с Windows 98 и по сей день. Также поддерживается в популярных ОС семейства UNIX.

MiniDV-видеокамеры [ править | править код ]

Исторически первое использование шины. Используется и по сей день как средство захвата фильмов с MiniDV в файлы. Возможен и захват с камеры на камеру.

Видеосигнал, идущий по 1394, идёт практически в том же формате, что и хранится на видеоленте. Это упрощает камеру, снижая требования к ней по наличию памяти.

В ОС Windows подключённая по 1394 камера является устройством DirectShow. Захват видео с такого устройства возможен в самых разнообразных приложениях — Adobe Premiere, Ulead Media Studio Pro, Windows Movie Maker. Существует также огромное количество простейших утилит, способных выполнять только этот захват. Возможно также и использование тестового инструмента Filter Graph Editor из свободно распространяемого DirectShow SDK.

Использование 1394 c miniDV положило конец проприетарным платам видеозахвата.

Отладчики [ править | править код ]

Интересным свойством контроллеров 1394 является способность читать и писать произвольные адреса памяти со стороны шины без использования процессора и ПО. Это проистекает из богатого набора асинхронных транзакций 1394, а также из её структуры адресации.

Читайте также:  Как отключить пароль на ноутбуке windows 10

Эта возможность чтения и редактирования памяти через 1394 без помощи процессора послужила причиной использования 1394 в двухмашинном отладчике ядра Windows — WinDbg. Такое использование существенно быстрее последовательного порта, но требует ОС не ниже Windows XP с обеих сторон. Также возможность используется в отладчиках для других ОС, например, Firescope для Linux [8] .

Организация устройств IEEE 1394 [ править | править код ]

Устройства IEEE 1394 организованы по трёхуровневой схеме — Transaction, Link и Physical, соответствующие трём нижним уровням модели OSI.

  • Transaction Layer — маршрутизация потоков данных с поддержкой асинхронного протокола записи-чтения.
  • Link Layer — формирует пакеты данных и обеспечивает их доставку.
  • Physical Layer — преобразование цифровой информации в аналоговую для передачи и наоборот, контроль уровня сигнала на шине, управление доступом к шине.

Связь между шиной PCI и Transaction Layer осуществляет Bus Manager. Он назначает вид устройств на шине, номера и типы логических каналов, обнаруживает ошибки.

Данные передаются кадрами длиной 125 мкс. В кадре размещаются временные слоты для каналов. Возможен как синхронный, так и асинхронный режимы работы. Каждый канал может занимать один или несколько временных слотов. Для передачи данных устройство-передатчик просит предоставить синхронный канал требуемой пропускной способности. Если в передаваемом кадре есть требуемое количество временных слотов для данного канала, поступает утвердительный ответ, и канал предоставляется.

Спецификации FireWire [ править | править код ]

IEEE 1394 [ править | править код ]

В конце 1995 года IEEE принял стандарт под порядковым номером 1394. В цифровых камерах Sony интерфейс IEEE 1394 появился раньше принятия стандарта и под названием iLink.

Интерфейс первоначально позиционировался для передачи видеопотоков, но пришёлся по нраву и производителям внешних накопителей, обеспечивая превосходную пропускную способность высокоскоростных дисков.

Скорость передачи данных — 98,304, 196,608 и 393,216 Мбит/с, которые округляют до 100, 200 и 400 Мбит/с. Длина кабеля — до 4,5 м.

IEEE 1394a [ править | править код ]

В 2000 году был утверждён стандарт IEEE 1394а. Был проведён ряд усовершенствований, что повысило совместимость устройств.

Было введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходный процесс установки надёжного подсоединения или отсоединения устройства.

IEEE 1394b [ править | править код ]

В 2002 году появляется стандарт IEEE 1394b с новыми скоростями: S800 — 800 Мбит/с и S1600 — 1600 Мбит/с. Соответствующие устройства обозначаются FireWire 800 или FireWire 1600, в зависимости от максимальной скорости.

Изменились используемые кабели и разъёмы. Для достижения максимальных скоростей на максимальных расстояниях предусмотрено использование волоконно-оптического кабеля: пластмассового — для длины до 50 метров, и стеклянного — для длины до 100 метров.

Несмотря на изменение разъёмов, стандарты остались совместимы, что позволяет использовать переходники.

12 декабря 2007 года была представлена спецификация S3200 [9] с максимальной скоростью 3,2 Гбит/с. Для обозначения данного режима используется также название «beta mode» (схема кодирования 8B10B (англ.) русск. (англ.) ). Максимальная длина кабеля может достигать 100 метров.

IEEE 1394.1 [ править | править код ]

В 2004 году увидел свет стандарт IEEE 1394.1. Этот стандарт был принят для возможности построения крупномасштабных сетей и резко увеличивает количество подключаемых устройств до гигантского числа — 64 449 [10] .

IEEE 1394c [ править | править код ]

Появившийся в 2006 году стандарт 1394c позволяет использовать витопарный кабель категории 5e (такой же, как и для сетей Ethernet). Возможно использовать параллельно с Gigabit Ethernet, то есть использовать две логические и друг от друга не зависящие сети на одном кабеле. Максимальная заявленная длина — 100 м, Максимальная скорость соответствует S800 — 800 Мбит/с.

Разъёмы [ править | править код ]

Существует четыре (до IEEE 1394c — три) вида разъёмов для FireWire:

IEEE 1394 Interface
Тип Последовательная связь
История
Разработчик Apple Computer (сейчас Apple, Inc.)
Разработано 1995
Произведено 1995 — 2013
Вытеснено Thunderbolt (2013)
Спецификации
Длина до 4,5 м
Ширина 1
Подключение на ходу Да
Внешнее Да
Макс. напряжение 30 В
Макс. ток 1,5 A
Сигнал данных Да
Полоса пропускания 400–3200 Мбит/с (50–400 Мбайт/с)
Выводы 4, 6, 9

IEEE 1394 (FireWire [1] , i-Link) — последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Различные компании продвигают стандарт под своими торговыми марками:

Содержание

История [ править | править код ]

В 1986 году членами Комитета по стандартам микрокомпьютеров (Microcomputer Standards Committee) принято решение объединить существовавшие в то время различные варианты последовательной шины ( Serial Bus ).

В 1992 году разработкой интерфейса занялась Apple.

В 1995 году принят стандарт IEEE 1394 (сама технология была разработана намного раньше, до появления Windows 95, что показывает большой потенциал данного института).

Около 1998 года содружество компаний, в том числе Microsoft, развивали идею обязательности 1394 для любого компьютера и использования 1394 внутри корпуса, а не только вне его. Существовали даже карты контроллеров с одним разъёмом, направленным внутрь корпуса. Также существовала идея Device Bay, то есть отсека для устройства со встроенным в отсек разъёмом 1394 и поддержкой горячей замены.

Такие тенденции прослеживаются в материалах Microsoft той поры, предназначенных для разработчиков компьютеров. Можно сделать вывод, что 1394 предлагали как замену ATA, то есть на роль, ныне выполняемую SATA.

Но этим идеям не суждено было воплотиться, и одной из главных причин такого исхода была лицензионная политика компании Apple, требующей выплат за каждый чип контроллера. Модели системных плат и ноутбуков, представленные на рынке начала 2010-х годов, как правило, уже не поддерживают интерфейс FireWire. Исключения представлены в узком топовом IT-сегменте [2] [3] .

Преимущества [ править | править код ]

  • Горячее подключение — возможность переконфигурировать шину без выключения компьютера.
  • Различная скорость передачи данных — 100, 200 и 400 Мбит/с в стандарте IEEE 1394/1394a, дополнительно 800 и 1600 Мбит/с в стандарте IEEE 1394b и 3200 Мбит/с в спецификации S3200.
  • Гибкая топология — равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера).
  • Высокая скорость — возможность обработки мультимедиа-сигнала в реальном времени
  • Поддержка изохронного трафика [4] .
  • Поддержка атомарных операций — сравнение/обмен, атомарное увеличение (операции семейства LOCK — compare/swap, fetch/add и т. д.).
  • Открытая архитектура — отсутствие необходимости использования специального программного обеспечения.
  • Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До 1,5 А и напряжение от 8 до 40 вольт.
  • Подключение до 63 устройств.

Шина IEEE 1394 может использоваться для:

Основные сведения [ править | править код ]

Кабель представляет собой 2 витые пары — А и B, распаянные как A к B, а на другой стороне кабеля — как B к A. Также возможен необязательный проводник питания.

Устройство может иметь до 4 портов (разъёмов). В одной топологии может быть до 64 устройств. Максимальная длина пути в топологии — 16. Топология древовидная, замкнутые петли не допускаются.

При присоединении и отсоединении устройства происходит сброс шины, после которого устройства самостоятельно выбирают из себя главное, пытаясь взвалить это «главенство» на соседа. После определения главного устройства становится ясна логическая направленность каждого отрезка кабеля — к главному или же от главного. После этого возможна раздача номеров устройствам. После раздачи номеров возможно исполнение обращений к устройствам.

Во время раздачи номеров по шине идёт трафик пакетов, каждый из которых содержит в себе количество портов на устройстве, ориентацию каждого порта — не подключён / к главному / от главного, а также максимальную скорость каждой связи (2 порта и отрезок кабеля). Контроллер 1394 принимает эти пакеты, после чего стек драйверов строит карту топологии (связей между устройствами) и скоростей (наихудшая скорость на пути от контроллера до устройства).

Читайте также:  Варочные поверхности газовые в интерьере

Операции шины делятся на асинхронные и изохронные.

Асинхронные операции — это запись/чтение 32-битного слова, блока слов, а также атомарные операции. Асинхронные операции используют 24-битные адреса в пределах каждого устройства и 16-битные номера устройств (поддержка межшинных мостов). Некоторые адреса зарезервированы под главнейшие управляющие регистры устройств. Асинхронные операции поддерживают двухфазное исполнение — запрос, промежуточный ответ, потом позже окончательный ответ.

Изохронные операции — это передача пакетов данных в ритме, строго приуроченном к ритму 8 КГц, задаваемому ведущим устройством шины путём инициации транзакций «запись в регистр текущего времени». Вместо адресов в изохронном трафике используются номера каналов от 0 до 31. Подтверждений не предусмотрено, изохронные операции есть одностороннее вещание.

Изохронные операции требуют выделения изохронных ресурсов — номера канала и полосы пропускания. Это делается атомарной асинхронной транзакцией на некие стандартные адреса одного из устройств шины, избранного как «менеджер изохронных ресурсов».

Помимо кабельной реализации шины, в стандарте описана и наплатная (реализации неизвестны).

Использование [ править | править код ]

Сеть поверх 1394 и FireNet [ править | править код ]

Существуют стандарты RFC 2734 — IP поверх 1394 и RFC 3146 — IPv6 поверх 1394. Поддерживались в ОС Windows XP и Windows Server 2003. Поддержка со стороны Microsoft прекращена в ОС Windows Vista, однако существует реализация сетевого стека FireNet в альтернативных драйверах от компании Unibrain [5] [6] (версия 6.00 вышла в ноябре 2012 года [7] ).

Поддерживается во многих ОС семейства UNIX (обычно требуется пересборка ядра с этой поддержкой).

Стандарт не подразумевает эмуляцию Ethernet над 1394 и использует совершенно иной протокол ARP. Несмотря на это, эмуляция Ethernet над 1394 была включена в ОС FreeBSD и является специфичной для данной ОС.

Внешние дисковые устройства [ править | править код ]

Существует стандарт SBP-2 — SCSI поверх 1394. В основном используется для подключения внешних корпусов с жёсткими дисками к компьютерам — корпус содержит чип моста 1394—ATA. При этом скорость передачи данных может достигать 27 МБ/с, что превышает скорость USB 2.0 как интерфейса к устройствам хранения данных, равную примерно 43 МБ/с, однако гораздо ниже таковой для USB 3.0.

Поддерживается в ОС семейства Windows с Windows 98 и по сей день. Также поддерживается в популярных ОС семейства UNIX.

MiniDV-видеокамеры [ править | править код ]

Исторически первое использование шины. Используется и по сей день как средство захвата фильмов с MiniDV в файлы. Возможен и захват с камеры на камеру.

Видеосигнал, идущий по 1394, идёт практически в том же формате, что и хранится на видеоленте. Это упрощает камеру, снижая требования к ней по наличию памяти.

В ОС Windows подключённая по 1394 камера является устройством DirectShow. Захват видео с такого устройства возможен в самых разнообразных приложениях — Adobe Premiere, Ulead Media Studio Pro, Windows Movie Maker. Существует также огромное количество простейших утилит, способных выполнять только этот захват. Возможно также и использование тестового инструмента Filter Graph Editor из свободно распространяемого DirectShow SDK.

Использование 1394 c miniDV положило конец проприетарным платам видеозахвата.

Отладчики [ править | править код ]

Интересным свойством контроллеров 1394 является способность читать и писать произвольные адреса памяти со стороны шины без использования процессора и ПО. Это проистекает из богатого набора асинхронных транзакций 1394, а также из её структуры адресации.

Эта возможность чтения и редактирования памяти через 1394 без помощи процессора послужила причиной использования 1394 в двухмашинном отладчике ядра Windows — WinDbg. Такое использование существенно быстрее последовательного порта, но требует ОС не ниже Windows XP с обеих сторон. Также возможность используется в отладчиках для других ОС, например, Firescope для Linux [8] .

Организация устройств IEEE 1394 [ править | править код ]

Устройства IEEE 1394 организованы по трёхуровневой схеме — Transaction, Link и Physical, соответствующие трём нижним уровням модели OSI.

  • Transaction Layer — маршрутизация потоков данных с поддержкой асинхронного протокола записи-чтения.
  • Link Layer — формирует пакеты данных и обеспечивает их доставку.
  • Physical Layer — преобразование цифровой информации в аналоговую для передачи и наоборот, контроль уровня сигнала на шине, управление доступом к шине.

Связь между шиной PCI и Transaction Layer осуществляет Bus Manager. Он назначает вид устройств на шине, номера и типы логических каналов, обнаруживает ошибки.

Данные передаются кадрами длиной 125 мкс. В кадре размещаются временные слоты для каналов. Возможен как синхронный, так и асинхронный режимы работы. Каждый канал может занимать один или несколько временных слотов. Для передачи данных устройство-передатчик просит предоставить синхронный канал требуемой пропускной способности. Если в передаваемом кадре есть требуемое количество временных слотов для данного канала, поступает утвердительный ответ, и канал предоставляется.

Спецификации FireWire [ править | править код ]

IEEE 1394 [ править | править код ]

В конце 1995 года IEEE принял стандарт под порядковым номером 1394. В цифровых камерах Sony интерфейс IEEE 1394 появился раньше принятия стандарта и под названием iLink.

Интерфейс первоначально позиционировался для передачи видеопотоков, но пришёлся по нраву и производителям внешних накопителей, обеспечивая превосходную пропускную способность высокоскоростных дисков.

Скорость передачи данных — 98,304, 196,608 и 393,216 Мбит/с, которые округляют до 100, 200 и 400 Мбит/с. Длина кабеля — до 4,5 м.

IEEE 1394a [ править | править код ]

В 2000 году был утверждён стандарт IEEE 1394а. Был проведён ряд усовершенствований, что повысило совместимость устройств.

Было введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходный процесс установки надёжного подсоединения или отсоединения устройства.

IEEE 1394b [ править | править код ]

В 2002 году появляется стандарт IEEE 1394b с новыми скоростями: S800 — 800 Мбит/с и S1600 — 1600 Мбит/с. Соответствующие устройства обозначаются FireWire 800 или FireWire 1600, в зависимости от максимальной скорости.

Изменились используемые кабели и разъёмы. Для достижения максимальных скоростей на максимальных расстояниях предусмотрено использование волоконно-оптического кабеля: пластмассового — для длины до 50 метров, и стеклянного — для длины до 100 метров.

Несмотря на изменение разъёмов, стандарты остались совместимы, что позволяет использовать переходники.

12 декабря 2007 года была представлена спецификация S3200 [9] с максимальной скоростью 3,2 Гбит/с. Для обозначения данного режима используется также название «beta mode» (схема кодирования 8B10B (англ.) русск. (англ.) ). Максимальная длина кабеля может достигать 100 метров.

IEEE 1394.1 [ править | править код ]

В 2004 году увидел свет стандарт IEEE 1394.1. Этот стандарт был принят для возможности построения крупномасштабных сетей и резко увеличивает количество подключаемых устройств до гигантского числа — 64 449 [10] .

IEEE 1394c [ править | править код ]

Появившийся в 2006 году стандарт 1394c позволяет использовать витопарный кабель категории 5e (такой же, как и для сетей Ethernet). Возможно использовать параллельно с Gigabit Ethernet, то есть использовать две логические и друг от друга не зависящие сети на одном кабеле. Максимальная заявленная длина — 100 м, Максимальная скорость соответствует S800 — 800 Мбит/с.

Читайте также:  Провод для внешнего жесткого диска usb

Разъёмы [ править | править код ]

Существует четыре (до IEEE 1394c — три) вида разъёмов для FireWire:

Категории блога

Не давно, на своем старом ноутбуке Asus F3 Ke нашел разъем IEEE 1394:). На протяжении многих лет я даже не задумывался о том, для чего он нужен. Большинство других пользователей, я уверен, что даже при наличии этого разъема, никогда не обращали на него внимания. А ведь в быту этот разъем очень полезен.

Последовательная высокоскоростная шина IEEE 1394 (FireWire, i-Link) предназначена для обмена цифровой информацией между каким либо электронным устройством и компьютером.

Чаще этот обмен осуществляется между кассетной видеокамерой и ПК. Другими словами этот разъем поможет перевести данные с miniDV-кассеты в ваш компьютер. Такие разъемы бывают не только на ноутбуках но и на стационарных компьютерах. Поэтому перед тем как задуматься о покупке платы с данным разъемом нужно тщательно просмотреть ваш ПК на наличие данного разъема. У меня вот как оказалось на ноутбуке есть такой разъем.
Я думаю что не у меня одного дома завалялась какая нибудь кассетная видеокамера и кассеты к ней, с интересным видео:)
Обычно подобное копирование кассеты занимает ровно столько по времени, сколько на ней есть. То есть к примеру на кассете есть видео продолжительностью 40 минут, вот примерно столько и будет копироваться данная информация на компьютер.
Кроме самого разъема, камеры и кассеты, вам так же понадобится кабель, с одной стороны которого шестиконтактный разъем, а на другом — четырехконтактный. Такой кабель нужен для подключения камеры к плате на стационарном компьютере. Если же вы хотите подключить камеру к ноутбуку то здесь разъемы на обеих устройствах совершенно одинаковые — 4х4 pin.

Если покупать плату для стационарного компьютера то есть риск того, что будет конфликт оборудования. Потому как подобный разъем существует в некоторых звуковых картах. Проблема решается простой заменой карты с IEEE 1394 одного производителя, на такую же карту другого производителя.
При подключении камеры, ее рекомендуется выключить. После того как вы соединили кабелем камеру и компьютер, нужно будет установить драйвера если они отсутствуют и запустить программное обеспечение которое и позволит управлять процессом оцифровки. Во многих операционных системах программное обеспечение как и драйвера установлены по умолчанию. Поэтому возможно вам осталось купить лишь провод для подключения камеры к компьютеру. В замен стандартному, есть стороннее программное обеспечение, которое парой обладает гораздо более функциональными возможностями.

Технические подробности

Уже почти 20 лет назад, фирма Sony показала свои первые промышленные модели mini-DV видеокамер DCR-XV700 и DCR-XV1000, и именно в них можно было встретить интерфейс IEEE 1394. После этого разъем стал своего рода стандартом для любой видеокамеры. Конечно разработан интерфейс был гораздо раньше.
Изначально высокоскоростной последовательный интерфейс IEEE 1394 разрабатывался компанией Apple как скоростной вариант SCSI. Чуть позже в Apple решили открыть стандарт и призвать к сотрудничеству заинтересованные фирмы. В следствии чего в 1990 году вышло техническое описание этой шины в виде стандарта IEEE 1394, который расшифровывается как Institute of Electrical and Electronic Engineers 1394(стандарт института инженеров по электротехнике и электронике 1394).
Скорость передачи данных — 100, 200, 400 Мбит/c, при этом длина провода должна не превышать 4,5 метра. Максимальное количество устройств — 63. IEEE 1394 похож на USB тем, что может без выключения переконфигурировать аппаратные средства компьютера.
Чуть выше я говорил о том что существует несколько видов кабелей(проводов) и разъемов:

  • шестиконтактный разъем IEEE 1394, позволяет не только передавать данные но и подавать на подключаемое устройство питание, общий ток при этом не более 1,5А, а напряжение от 8 до 40 вольт. Именно поэтому, выше я рекомендовал отключать устройство при подключении к ПК.
  • четырехконтактный разъем IEEE 1394, дает возможность только передавать данные, при это нужно не забыть позаботиться о внешнем источнике питания

Разные компании называют этот стандарт по разному:

  • Apple — FireWire
  • Sony — i.LINK
  • Yamaha — mLAN
  • TI — Lynx
  • Creative — SB1394

Поэтому можно встретить различные описания этого разъема в интернете. Но все они работают под единым стандартом IEEE 1394.
Существуют различные вариации данного стандарта, в следствии чего варьируется и скорость передачи данных:

  • IEEE 1394/1394a — 100, 200 и 400 Мбит/с
  • IEEE 1394b — 100, 200, 400, 800 и 1600 Мбит/с
  • S3200 — 100, 200, 400, 800, 1600 и 3200 Мбит/с

Высокая скорость интерфейса передачи данных позволяет обрабатывать различные мультимедийные данные в реальном времени.
Устройства не требующие большой мощности для питания, могут использоваться с интерфейсом без дополнительного блока питания. И это возможно благодаря питанию на самой шине.
Горячее подключение — возможность переконфигурировать шину без выключения компьютера.
Из за гибкой топологии, устройства достаточно равноправны и могут подключаться друг к другу, даже без помощи компьютера.
Топология IEEE-1394 позволяет как древовидную, так и цепочечную архитектуру, а также комбинацию из того и другого. По стандарту, разделить шину архитектурно, можно двумя основными блоками — контроллер(контроллеры) и кабельная часть. Из за того что контроллер может быть не один, часть с контроллерами часто называют объединительной(backplane). Адрес узла на «дереве» 16-ти разрядный, что позволяет адресовать до 64К узлов. По 16 конечных устройств на каждый узел. К одному мосту шины (bridge) на backplane панели может быть подключено до 63 узлов. Так как под идентификатор номера шины (моста) отведено 10 разрядов, то общее количество узлов и составляет 64K.
Стандарт разрешат подключение до 27 устройств, но каждый узел может подключить 3 устройства. ID (физический адрес) назначается устройству при: горячее подключение устройства к шине, общий сброс шины, подача питания на контроллер шины и подключенного устройства. Адреса выдаются в порядке обнаружения устройства. Переключение перемычек как на HDD при этом не требуется. Если применять размножители и репитеры то можно выстроить достаточно сложную топологию IEEE 1394. В большинстве случаев такая сложная топология попросту не нужна.
IEEE 1394 может использоваться как для создания компьютерной сети, так и для подключения различных мультимедийных(аудио,видео) устройств. Можно даже подключить принтер или сканер к примеру. На самом деле вариантов гораздо больше. Но так вышло что наибольшую популярность получил данный способ подключения, именно при подключении видеокамер. Об этом я говорил выше.
Теоретически длина кабеля может достигать 224 метра. Стандарт говорит о следующих цифрах:

  • IEEE 1394a — 4.5 м
  • IEEE 1394b — 100 м

Главной особенностью данного интерфейса является — гарантированная полоса пропуская. Что очень важно при работе с аудио и видеоматериалом. То есть не зависимо от подключенных устройств и их нагрузки на шину, всегда можно организовать так называемый «коридор» между компьютером и видеокамерой.
Кабель представляет из себя следующее: экранированная оболочка, 2 витые пары для передачи сигналов шины и 2 провода питания. Разъемы IEEE 1394 можно разделить на два типа. Первый тип отдает питание устройству(6-и контактный разъем), а второй соответственно не отдает(4-х контактный разъем).
При составлении материлов брал информацию от сюда:

Там же можно почитать подробнее про IEEE 1394. Мне же осталось купить кабель и попробовать оцифровать какую либо старую видео-касету.

Ссылка на основную публикацию
Что такое секретный режим
Режим инкогнито — приватный режим работы браузера, при работе в браузере не сохраняются данные о посещенных сайтах, поисковых запросах, другие...
Через какое время отключают сим карту мегафон
Часто можно слышать, что некоторые люди вместо одной сим-карты предпочитают пользоваться двумя или сразу несколькими. Это объясняется лояльной политикой компании...
Через прямую l провести плоскость перпендикулярно данной
Не будет преувеличением утверждать, что построение взаимно перпендикулярных прямых и плоскостей наряду с определением расстояния между двумя точками являются основными...
Что такое сенсорный экран на телефоне
Сначала тачскрины (сенсорные экраны) встречались достаточно редко. Их возможно было найти, только лишь в некоторых КПК, PDA (карманных компьютерах). Как...
Adblock detector